Spotify — Behind the Scenes

Gunnar Kreitz

Spotify
gkreitz@spotify.com

KTH, September 29 2011

Gunnar Kreitz Spotify — Behind the Scenes

Background

What is Spotify?

3
#
Lightweight on-demand streaming

Large catalogue, over 15 million tracks

Available in US and 7 European countries

Over 10 million users across Europe, over 2 million subscribers

Fast (median playback latency of 265 ms)

vV V. v v v Y

Legal

Image based on Western Europe Map, Wikimedia Commons, CC BY SA 3.0
Gunnar Kreitz Spotify — Behind the Scenes

Background

Business Idea

» More convenient than piracy

Spotify:

Gunnar Kreitz Spotify — Behind the Scenes

Background

Business |dea

» More convenient than piracy

» Spotify Free (ads, 10h/month after 6 months)
» Spotify Unlimited (no ads, on computer)

» Spotify Premium (no ads, mobile, offline, API)

Spotify:

Gunnar Kreitz Spotify — Behind the Scenes

Background

Spotify Tech Team

Most developers in Stockholm
Very talented people

Proud of the product

Team size: > 100

vV vV.v v Y

We're growing fast and hiring!

Gunnar Kreitz Spotify — Behind the Scenes

Background

Development Environment

Scrum methodology with three week sprints
Some cross-functional teams, some specialized project teams
Kanban for some teams

Scrum teams consist of programmers, testers and designers

vV vV.v. v Y

Hack days

Gunnar Kreitz Spotify — Behind the Scenes

Background

Technical Design Goals

Available
Fast
Scalable

Secure

vV v.v Y

Gunnar Kreitz Spotify — Behind the Scenes

Background

The Importance of Being Fast

v

How important is speed?

v

Increasing latency of Google searches by 100 to 400ms
decreased usage by 0.2% to 0.6% [Brutlag09]

The decreased usage persists
Median playback latency in Spotify is 265 ms (feels immediate)

v

v

Gunnar Kreitz Spotify — Behind the Scenes

BUFFERING ... Please Wait,

(By http://www.flickr.com/photos/marxalot/, CC BY-SA 2.0)

Spotify:

http://www.flickr.com/photos/marxalot/

Background

Client Software

Desktop clients on Linux (preview), OS X and Windows
» Windows version works well under Wine

v

v

Smartphone clients on Android, i0OS, Palm, Symbian, Windows
Phone

libspotify on Linux, OS X and Windows
Sonos, Logitech, Onkyo, and Telia hardware players
Mostly in C++, some Objective-C++ and Java

v

v

v

Gunnar Kreitz Spotify — Behind the Scenes

Background

Client Software vs. Web-based

Web-based applications are easier to update and maintain
Web-based don't need to be installed
Client software still gives better user experience

Volume control, separate application, faster

vV vV.v. v Y

Auto-upgrades eases parts of installation pain

Gunnar Kreitz Spotify — Behind the Scenes

Background

Everything is a link

» spotify: URI scheme

» spotify:track:6JEKOCvv]jDjjMUBFoXShNZ#0:44

» spotify:user:gkreitz:playlist:
4W5L19AvhsGC3U9xm61Q9Q

> spotify:search:never+gonna+give+you+up

Gunnar Kreitz Spotify — Behind the Scenes

spotify:track:6JEK0CvvjDjjMUBFoXShNZ#0:44
spotify:user:gkreitz:playlist:4W5L19AvhsGC3U9xm6lQ9Q
spotify:user:gkreitz:playlist:4W5L19AvhsGC3U9xm6lQ9Q
spotify:search:never+gonna+give+you+up
http://open.spotify.com/track/6JEK0CvvjDjjMUBFoXShNZ#0:44
http://open.spotify.com/track/6JEK0CvvjDjjMUBFoXShNZ#0:44

Background

Everything is a link

» spotify: URI scheme

» spotify:track:6JEKOCvvjDjjMUBFoXShNZ#0:44

» spotify:user:gkreitz:playlist:
4W5L19AvhsGC3U9xm61Q9Q

> spotify:search:never+gonna+give+you+up

» New URI schemes not universally supported

» http://open.spotify.com/track/
6JEKOCvvDj jMUBFoXShNZ#0: 44

Gunnar Kreitz Spotify — Behind the Scenes

spotify:track:6JEK0CvvjDjjMUBFoXShNZ#0:44
spotify:user:gkreitz:playlist:4W5L19AvhsGC3U9xm6lQ9Q
spotify:user:gkreitz:playlist:4W5L19AvhsGC3U9xm6lQ9Q
spotify:search:never+gonna+give+you+up
http://open.spotify.com/track/6JEK0CvvjDjjMUBFoXShNZ#0:44
http://open.spotify.com/track/6JEK0CvvjDjjMUBFoXShNZ#0:44

Background

Links contain opaque id:s

CNN' HAS OBTAINED THIS
EXCLUSIVE FDOTAGE OF
THE RIOT-TORN —
J *CZZZHT *
NEVER GONNA
A GIVE you UP.-- ¢

=

s
WHAT THE HELL?

CREAT MOMENTS IN TROLLNG:
RICK ASTLEY [5 SUCCESSFULLY RICKROLLED

(Image from XKCD, http://www.xkcd. com/351)

Gunnar Kreitz Spotify — Behind the Scenes

http://www.xkcd.com/351

Background

Metadata API

v

Simple, http-based API
Search and lookup

http://ws.spotify.com/lookup/1/?uri=spotify:track:
6JEKOCvv3Dj jMUBFoXShNZ

http://ws.spotify.com/search/1/artist?q=foo

v

v

v

Developer resources: http://developer.spotify.com/

v

Gunnar Kreitz Spotify — Behind the Scenes

http://ws.spotify.com/lookup/1/?uri=spotify:track:6JEK0CvvjDjjMUBFoXShNZ
http://ws.spotify.com/lookup/1/?uri=spotify:track:6JEK0CvvjDjjMUBFoXShNZ
http://ws.spotify.com/search/1/artist?q=foo
http://developer.spotify.com/

Overview of Spotify Protocol

Proprietary protocol

Designed for on-demand streaming
Only Spotify can add tracks
96—320 kbps audio streams (most are Ogg Vorbis g5, 160 kbps)

Peer-assisted streaming

vV vV.v v Y

Spotify

Photo by opethpainter http://www.flickr.com/photos/opethpainter/3452027651, CC BY 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/opethpainter/3452027651

Spotify Protocol

(Almost) Everything over TCP
(Almost) Everything encrypted

Multiplex messages over a single TCP connection

vV v. v Vv

Persistent TCP connection to server while logged in

Gunnar Kreitz Spotify — Behind the Scenes

Caches

Player caches tracks it has played

Default policy is to use 10% of free space (capped at 10 GB)
Caches are large (56% are over 5 GB)

Least Recently Used policy for cache eviction

Over 50% of data comes from local cache

vV v.v v v.Y

Cached files are served in P2P overlay

Gunnar Kreitz Spotify — Behind the Scenes

Streaming a Track

v

Request first piece from Spotify servers

Meanwhile, search Peer-to-peer (P2P) for remainder

v

Switch back and forth between Spotify servers and peers as
needed

v

Towards end of a track, start prefetching next one

v

Gunnar Kreitz Spotify — Behind the Scenes

TCP Congestion Window

» TCP maintains several windows, among them cwnd

» cwnd is used to avoid network congestion

» A TCP sender can never have more than cwnd un-ack:ed bytes
outstanding

» Additive increase, multiplicative decrease

Gunnar Kreitz Spotify — Behind the Scenes

TCP Congestion Window

v

TCP maintains several windows, among them cwnd

v

cwnd is used to avoid network congestion

v

A TCP sender can never have more than cwnd un-ack:ed bytes
outstanding

Additive increase, multiplicative decrease

v

What to do with cwnd when a connection sits idle?
RFC 5681 (TCP Congestion Control) says:

Therefore, a TCP SHOULD set cwnd to no more
than RW before beginning transmission if the TCP
has not sent data in an interval exceeding the

retransmission timeout.
Spotify-

Gunnar Kreitz Spotify — Behind the Scenes

v

v

TCP Congestion Window and Spotify

» Spotify traffic is bursty

» Initial burst is very latency-critical

» Want to avoid needless reduction of congestion window
» Configure kernels to not follow the RFC 5681 SHOULD.

Gunnar Kreitz Spotify — Behind the Scenes

When to Start Playing?

=)

Electronic Frontier Foundation

Certified Accurate
idth M

ter

v

Minimize latency while avoiding stutter

v

TCP throughput varies

» Sensitive to packet loss
» Bandwidth over wireless mediums vary

v

Model throughput as a Markov chain and simulate

Heuristics

v

Spotify:

Image by ronin691 http://www.flickr.com/photos/ronin691/3482770627, CC BY SA 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/ronin691/3482770627

Security Through Obscurity

Client must be able to access music data

Reverse engineers should not

So, we can't tell you exactly how our client works

vV v.v Vv

Plus, we need to apply software obfuscation

Image by XKCD http://xked.com/730/, CC BY NC 2.5 Spotify:

Gunnar Kreitz Spotify — Behind the Scenes

http://xkcd.com/730/

Streaming

Security Through Obscurity

ALAIH, DONEMLINI,
DONEHLIN, ALATH,
ALA, DONEHLW,
DDNEHLINI DONEHLINI,
ALATH, ALAIH,
DGNEHUNJ ALAIH,
DDNEHUN! DONEHLINI,
DUNEHL'IM

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATR STREAM,
WE SEND IT THROUGH OUR
NAVATO CODE TALKER.

... 1S HE JUST USING
NAVATO WORDS FOR
WHOA, HEY, KEEP

"ZERD AND "ONE"?
YOUR \XJ‘ICE DOWN!

M%

(Image from XKCD, http://www.xked. com/257)

Gunnar Kreitz

Spotify — Behind the Scenes

http://www.xkcd.com/257

P2P Protocol

P2P Goals

Easier to scale
Less servers
Lass bandwidth
Better uptime
Fun!

vV v.v. v Y

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Music vs. Movies

Music Movies
» Small (5 minutes, 5 MB) » Large (2 hours, 1.5GB)
» Many plays/session » High bit rate
» Large catalog
> Active users

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Music vs. Movies

Music Movies
» Small (5 minutes, 5 MB) » Large (2 hours, 1.5GB)
» Many plays/session » High bit rate
» Large catalog

> Active users
Main problem: peer discovery Main problem: download strategy

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

P2P Structure

Unstructured network (not a Distributed Hash Table)
Edges are formed as needed
Nodes have fixed maximum degree (60)

No overlay routing

vV vV.v. v Y

Neighbor eviction by heuristic evaluation of utility

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

P2P Structure

All peers are equals (no supernodes)
A user only downloads data she needs

P2P network becomes (weakly) clustered by interest

vV v.v Y

Oblivious to network architecture

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Brief Comparison to BitTorrent

One (well, three) P2P overlay for all tracks (not per-torrent)
Does not inform peers about downloaded blocks
Downloads blocks in order

Does not enforce fairness (such as tit-for-tat)

vV vV.v. v Y

Informs peers about urgency of request

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Finding Peers

v

Sever-side tracker (BitTorrent style)

» Only remembers 20 peers per track
» Returns 10 (online) peers to client on query

v

Broadcast query in small (2 hops) neighborhood in overlay
(Gnutella style)

v

LAN peer discovery (cherry on top)

v

Client uses all mechanisms for every track

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Downloading in P2P

v

Ask for most urgent pieces first

v

If a peer is slow, re-request from new peers

v

When buffers are low, download from central server as well
» When doing so, estimate what point P2P will catch up from

v

If buffers are very low, stop uploading

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Limit resource usage

v

Cap number of neighbors

v

Cap number of simultaneous uploads
» TCP Congestion Control gives "“fairness” between connections

v

Cap cache size

v

Mobile clients don't participate in P2P

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

P2P NAT Traversal

» Asks to open ports via UPnP
» Attempt connections in both directions
» High connection failure rate (65%)

» Room for improvement

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Security in our P2P Network

Control access to participate
Verify integrity of downloaded files
Data transfered in P2P network is encrypted

vV v.v Y

Usernames are not exposed in P2P network, all peers assigned
pseudonym

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Avoiding hijacking

» A peer cannot ask peers to connect to arbitrary IP
address/port

» Avoiding DDoS issues

» Misbehaving peers are reported

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Comprised of many small services
Do one task and do it well

Python, C++, Java, Scala
No common framework (yet)

Spotify

P2P Protocol

High-level overview

» Client connects to an Access Point (AP)
» AP handles authentication and encryption
» AP demultiplexes requests, forwards to backend servers

» Gives redundancy and fault-tolerance

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

High-level overview (cont'd)

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Locating an Access Point

DNS SRV lookup of _spotify-client._tcp.spotify.com
GeoDNS to return access point close to you

Fallback to A record for ap.spotify.com

vV v.v Y

Seeing problems with large responses (TCP DNS in home
routers)

Gunnar Kreitz Spotify — Behind the Scenes

_spotify-client._tcp.spotify.com
ap.spotify.com

P2P Protocol

Communcating with backend servers

» Most common backend protocol is HTTP
» Some services need to push information, e.g. playlist

» Currently, each such service has its own protocol
» Moving towards a more unified backend protocol

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Lookup, version 1

Put content on random servers
Multicast UDP to find server

Each server has a small daemon with an index, responding to
lookup queries

v

v

v

v

Scaling issues

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Lookup, version 2

DNS-based (using TXT records) Consistent Hashing
Each client knows entire keyspace
Each server handles parts of keyspace

Hash key to find master server

vV vV.v. v Y

Repeated hashing to find slaves

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Storage

Distributing music

B Production storage

90TB o 1
2.4m tracks

e 90TB
~ 2.4m tracks
Stockholm London

\/'
[

290TB
" >10m tracks

Spotify.

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Playlist

Our most complex service (!)
Simultaneous writes with automatic conflict resolution
Publish-subscribe system to clients

Changes automatically versioned, transmits deltas

vV vV.v. v Y

Terabyte sizes of data

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Evaluation

» So, how well does it work?
» Collected measurements 23-29 March 2010

» (Before Facebook integration, local files, ...)

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Data Sources

Data source - ratio - by week

100

Y3INIL3I0 I90L / 100LQ¥d

Mon Tue Wed Thu Fri Sat Sun Mon

M Server 10.86 6.76 9.62
O p2pr 33.90 23.78 33.86
O cache 55.24 48.47 56.53

Spotify.

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Data Sources

v

Mostly minor variations over time

» Better P2P performance on weekends
» P2P most effective at peak hours

8.8% from servers
35.8% from P2P
55.4% from caches

v

v

v

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Latency and Stutter

Median latency: 265 ms

75th percentile: 515 ms

90th percentile: 1047 ms

Below 1% of playbacks had stutter occurrences

vV v. v Vv

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

Finding Peers

Table: Sources of peers

Sources for peers ‘ Fraction of searches

Tracker and P2P 75.1%
Only Tracker 9.0%
Only P2P 7.0%
No Peers Found 8.9%

» Each mechanism by itself is fairly effective

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/altemark/337248947/

P2P Protocol

Protocol Overhead

Table: Distribution of application layer traffic in overlay network

Type ‘ Fraction
Music Data, Used 94.80%
Music Data, Unused | 2.38%
Search Overhead 2.33%
Other Overhead 0.48%

» Measured at socket layer
» Unused data means it was cancelled/duplicate

Gunnar Kreitz Spotify — Behind the Scenes

P2P Protocol

More measurements

Recently, we investigated more general network properties
How many behind NATs? How many with UPnP support?
How many IPs does each user connect form over a week?
Does this vary between weekdays and weekends?

Does this vary between countries?

vV V. v v v Y

See our P2P'11 paper for data and details

Spotify:

Photo by Scott Akerman http://www.flickr.com/photos/sterlic/4299633060/, CC BY SA 2.0

Gunnar Kreitz Spotify — Behind the Scenes

http://www.flickr.com/photos/sterlic/4299633060/

P2P Protocol

Thank you! Questions?

gkreitz@spotify.com

Gunnar Kreitz Spotify — Behind the Scenes

	Background
	Streaming
	P2P Protocol

