Stateful Subset Cover

Mattias Johansson¹ Gunnar Kreitz² Fredrik Lindholm¹

¹Fricsson AB

²KTH – Royal Institute of Technology School of Computer Science and Communication gkreitz@kth.se

ACNS '06, June 8

Agenda

Background

Broadcast Encryption Subset Cover Subset Difference

Our Results

Stateful Subset Cover Performance Security Summary

Broadcast Encryption Subset Cover Subset Difference

Soccer World Cup on Cell Phones

- Pay-per-view broadcasting to cell phones
- Only paying customers can watch

Broadcast Encryption Subset Cover Subset Difference

Soccer World Cup on Cell Phones

- Pay-per-view broadcasting to cell phones
- Only paying customers can watch
- Encrypted video

Broadcast Encryption Subset Cover Subset Difference

What is Broadcast Encryption?

- The problem of establishing secure communication with a changing group of receivers
- One key server, multiple receivers
- Network as a broadcast medium

Broadcast Encryption Subset Cover Subset Difference

What is Broadcast Encryption?

- The problem of establishing secure communication with a changing group of receivers
- One key server, multiple receivers
- Network as a broadcast medium
- Berkovits (1991), Fiat and Naor (1994)

Broadcast Encryption Subset Cover Subset Difference

The Basic Principle

- Establish a Group Key (sometimes called Media Key), K
- Broadcast content encrypted with K

Broadcast Encryption Subset Cover Subset Difference

The Basic Principle

- ► Establish a *Group Key* (sometimes called *Media Key*), *K*
- Broadcast content encrypted with K
- Updating the group key (depending on application)
 - When some number of members (possibly 1) have left/joined
 - At timed intervals
 - A combination of the above

Broadcast Encryption Subset Cover Subset Difference

Notation and Terminology

- r is the number of revoked users
- *m* is the number of members
- u = r + m is the number of users

Broadcast Encryption Subset Cover Subset Difference

The Naïve Scheme

One symmetric key for each user

Broadcast Encryption Subset Cover Subset Difference

The Naïve Scheme

- One symmetric key for each user
- To establish group key K, broadcast K encrypted with each member's key

Broadcast Encryption Subset Cover Subset Difference

The Naïve Scheme

- One symmetric key for each user
- To establish group key K, broadcast K encrypted with each member's key
- Bandwidth is $\Theta(m)$

Broadcast Encryption Subset Cover Subset Difference

Subset Cover-based Broadcast Encryption

 Subset Cover is a principle for constructing Broadcast Encryption schemes

Broadcast Encryption Subset Cover Subset Difference

Subset Cover-based Broadcast Encryption

- Subset Cover is a principle for constructing Broadcast Encryption schemes
- Static family of sets of users
- Each set is associated with a key
- Only users in the subset can compute the key

Broadcast Encryption Subset Cover Subset Difference

Subset Cover-based Broadcast Encryption

- Subset Cover is a principle for constructing Broadcast Encryption schemes
- Static family of sets of users
- Each set is associated with a key
- Only users in the subset can compute the key
- Naor, Naor, Lotspiech 2001

Broadcast Encryption Subset Cover Subset Difference

Subset Cover (cont'd)

- To distribute a new group key
 - 1. Compute a cover of the members (avoiding revoked users), using the subsets
 - 2. Encrypt group key K with subset key for each subset in cover

Broadcast Encryption Subset Cover Subset Difference

Subset Cover (cont'd)

- To distribute a new group key
 - 1. Compute a cover of the members (avoiding revoked users), using the subsets
 - 2. Encrypt group key K with subset key for each subset in cover
- Bandwidth is $\Theta(\text{cover size})$

Broadcast Encryption Subset Cover Subset Difference

The Subset Difference Scheme

- A scheme based on the Subset Cover principle
- Users are viewed as leafs of a (balanced) binary tree
- Subsets are of the form "all users below node v but not below (or in) node w"
- Bandwidth is min(2r + 1, m)

Broadcast Encryption Subset Cover Subset Difference

The Subset Difference Scheme

- A scheme based on the Subset Cover principle
- Users are viewed as leafs of a (balanced) binary tree
- Subsets are of the form "all users below node v but not below (or in) node w"
- Bandwidth is min(2r + 1, m)
- Example: S_{2,10}

Broadcast Encryption Subset Cover Subset Difference

The Subset Difference Scheme

- A scheme based on the Subset Cover principle
- Users are viewed as leafs of a (balanced) binary tree
- Subsets are of the form "all users below node v but not below (or in) node w"
- Bandwidth is min(2r + 1, m)
- Examples: S_{2,10} and S_{6,12}

Broadcast Encryption Subset Cover Subset Difference

Subset Difference

Broadcast Encryption Subset Cover Subset Difference

Broadcast Encryption Subset Cover Subset Difference

Broadcast Encryption Subset Cover Subset Difference

Subset Difference Example

Broadcast: $E_{K_{2,11}}(K)$, $E_{K_{3,7}}(K)$ User at node 9 leaves, user at node 14 joins

Broadcast Encryption Subset Cover Subset Difference

Subset Difference Example

Broadcast: $E_{K_{2,11}}(K)$, $E_{K_{3,7}}(K)$ User at node 9 leaves, user at node 14 joins $E_{K_{4,9}}(K')$

Broadcast Encryption Subset Cover Subset Difference

Broadcast Encryption Subset Cover Subset Difference

Our Idea

- Adding a State Key, K_s, given to all members
- Need to be covered and have state key to recover group key
- Only revoked users who have state key need to be avoided in the cover

Our Idea

- ▶ Adding a State Key, K_s, given to all members
- Need to be covered and have state key to recover group key
- Only revoked users who have state key need to be avoided in the cover
- General modification reducing bandwidth for Subset Cover based schemes

Stateful Subset Cover Performance Security Summary

Broadcasting a Group Key

- 1. Calculate cover C_j , covering all joiners, avoiding *all* revoked users
- 2. Calculate cover C, covering all members not covered in C_j , avoiding revoked users who have state key

Broadcasting a Group Key

- 1. Calculate cover C_j , covering all joiners, avoiding *all* revoked users
- 2. Calculate cover C, covering all members not covered in C_j , avoiding revoked users who have state key
- 3. Select random blinding value *R* and let $K_e = R \oplus K_s$ (K_s state key)

Broadcasting a Group Key

- 1. Calculate cover C_j , covering all joiners, avoiding *all* revoked users
- 2. Calculate cover C, covering all members not covered in C_j , avoiding revoked users who have state key
- 3. Select random blinding value *R* and let $K_e = R \oplus K_s$ (K_s state key)
- 4. Broadcast
 - $E_{K_e}(K), E_{K_e}(K'_s)$
 - $E_{K_c}(K_e)$ for all $c \in C_j$
 - $E_{\mathcal{K}_c}(\mathcal{R})$ for all $c \in C$

Stateful Subset Cover Performance Security Summary

Advantages

- In traditional subset cover, there are two types of users, "must cover" and "must avoid"
- Now there is a new type, "don't care"

Advantages

- In traditional subset cover, there are two types of users, "must cover" and "must avoid"
- Now there is a new type, "don't care"
- ► Since most subset cover schemes have bandwidth O(r), we can always
 - Relabel all "don't care" as "must cover"
 - Run original cover algorithm

Advantages

- In traditional subset cover, there are two types of users, "must cover" and "must avoid"
- Now there is a new type, "don't care"
- ► Since most subset cover schemes have bandwidth O(r), we can always
 - Relabel all "don't care" as "must cover"
 - Run original cover algorithm
- But often we can make better use of the "may cover" nodes by developing a new, scheme-specific, cover algorithm

Stateful Subset Cover Performance Security Summary

Stateful Subset Difference Example

Users at nodes 8, 9, 10, 12, and 13 were members and have state key K_s .

Stateful Subset Cover Performance Security Summary

Stateful Subset Difference Example

Users at nodes 8, 9, 10, 12, and 13 were members and have state key K_s . User at node 9 leaves, user at 14 joins. Broadcast:

Stateful Subset Cover Performance Security Summary

Stateful Subset Difference Example

Users at nodes 8, 9, 10, 12, and 13 were members and have state key K_s . User at node 9 leaves, user at 14 joins. Broadcast:

$$\mathrm{E}_{K_{3,15}}(K_e), \mathrm{E}_{K_e}(K_g, K'_s)$$

Stateful Subset Cover Performance Security Summary

Stateful Subset Difference Example

Users at nodes 8, 9, 10, 12, and 13 were members and have state key K_s . User at node 9 leaves, user at 14 joins. Broadcast:

$$E_{K_{2,9}}(R), E_{K_{3,15}}(K_e), E_{K_e}(K_g, K'_s)$$

Stateful Subset Cover Performance Security Summary

The Good, the Bad, and the Ugly

Bandwidth improves considerably

Stateful Subset Cover Performance Security Summary

The Good, the Bad, and the Ugly

- Bandwidth improves considerably
- Not collusion-resistant

Stateful Subset Cover Performance Security Summary

The Good, the Bad, and the Ugly

- Bandwidth improves considerably
- Not collusion-resistant
- Scheme becomes stateful

Stateful Subset Cover Performance Security Summary

The Good, the Bad, and the Ugly

- Bandwidth improves considerably
- Not collusion-resistant
- Scheme becomes stateful (not so bad after all)

Stateful Subset Cov Performance Security Summary

Notation (again)

- r is the number of revoked users
- *m* is the number of members
- u = r + m is the number of users

Stateful Subset Cove Performance Security Summary

Notation (again)

- r is the number of revoked users
- *m* is the number of members
- u = r + m is the number of users
- Δr is the number of members removed since last update
- Δm is the number of members added since last update

Stateful Subset Cov Performance Security Summary

Performance Comparison

Scheme	Bandwidth		
Stateful SD	$\Delta m + 2\Delta r + 1$		
LKH	$2(\Delta m + \Delta r) \log m$		
SD	min(2 <i>r</i> + 1, <i>m</i>)		

► Bandwidth becomes linear in $\Delta m + \Delta r$ instead of in *r*

Stateful Subset Cov Performance Security Summary

Performance Comparison

Scheme	Bandwidth		
Stateful SD	$\Delta m + 2\Delta r + 1$		
LKH	$2(\Delta m + \Delta r) \log m$		
SD	min(2 <i>r</i> + 1, <i>m</i>)		

- ▶ Bandwidth becomes linear in $\Delta m + \Delta r$ instead of in *r*
- We have also adapted the (p;c)- π scheme

Stateful Subset Cove Performance Security Summary

Performance Comparison

Scheme	Bandwidth		
Stateful SD	$\Delta m + 2\Delta r + 1$		
LKH	$2(\Delta m + \Delta r) \log m$		
SD	min(2 <i>r</i> + 1, <i>m</i>)		

- ▶ Bandwidth becomes linear in $\Delta m + \Delta r$ instead of in *r*
- We have also adapted the (p;c)-π scheme (but the worst-case bandwidth is a bit messy)

Stateful Subset Cov Performance Security Summary

Simulation Data

- Schemes were simulated using artificial data
- Used a highly dynamic system where at least 2% of users change state every round

Figure: The Full-range and Sinus-shaped datasets

Stateful Subset Cov Performance Security Summary

Simulation Results

	Sinus		Full-range	
Scheme	Avg.	Max	Avg.	Max
Stateful SD	45	56	43	60
Stateful (1000;1)- π	30	39	28	34
LKH	218	269	241	394
Normal SD	222	296	170	305
Normal (1000;1)- π	154	180	114	180

Table: Keys used (in thousands) in the different schemes

Stateful Subset Cov Performance Security Summary

Old Commercial Threats

- Pirate decoders
 - Based on real user keys
 - Based on weakness in system

Stateful Subset Cove Performance Security Summary

Old Commercial Threats

- Pirate decoders
 - Based on real user keys
 - Based on weakness in system
- Legal member redistributing
 - Group key
 - Content

Stateful Subset Cov Performance Security Summary

Our Scheme is Not Collusion-resistant

- Assume Alice was a member, and Bob was not
- Alice leaves the group, and shares her state key with Bob

Stateful Subset Co Performance Security Summary

Our Scheme is Not Collusion-resistant

- Assume Alice was a member, and Bob was not
- Alice leaves the group, and shares her state key with Bob
- If Bob was covered, he can compute the new group key and state key

Stateful Subset Cov Performance Security Summary

Our Scheme is Not Collusion-resistant

- Assume Alice was a member, and Bob was not
- Alice leaves the group, and shares her state key with Bob
- If Bob was covered, he can compute the new group key and state key
- Mitigation:
 - Make it hard for users to know their keys
 - Use periodic updates with the underlying scheme, which will revoke all cheaters

A simple, generic modification of subset cover schemes

- ► A simple, generic modification of subset cover schemes
- Bandwidth is proportional to *change*, rather than number of revoked users

- A simple, generic modification of subset cover schemes
- Bandwidth is proportional to *change*, rather than number of revoked users
- Not collusion-resistant

 Background
 Performance

 Our Results
 Security

 Summary
 Summary

Thank you! Questions?

