Measurements on the Spotify Peer-Assisted Music-on-Demand Streaming System

Mikael Goldmann Gunnar Kreitz

KTH - Royal Institute of Technology Spotify gkreitz@spotify.com

P2P'11, September 1 2011

What is Spotify?

- On-demand peer-assisted music streaming
- Large catalog of music (over 15 million tracks)
- Available in US and 7 European countries, over 10 million users
- Over 1.6 million subscribers
- Fast (median playback latency of 265 ms)
- Legal

Business Idea

► More convenient than piracy

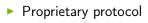
Business Idea

- More convenient than piracy
- Spotify Free (ads, 10h/month, invite needed in US)
- Spotify Unlimited (no ads, on computer)
- Spotify Premium (no ads, mobile, offline, API)

Desktop Client

Smartphone Client

Hardware Clients



Speed

Spotify

Overview of Spotify Protocol

- Designed for on-demand streaming
- Only Spotify can add tracks
- 96–320 kbps audio streams (most are Ogg Vorbis q5, 160 kbps)
- Relatively simple and straightforward design

Spotify Protocol

- (Almost) Everything encrypted
- (Almost) Everything over TCP
- Multiplex messages over a single TCP connection
- Persistent TCP connection to server while logged in

Caches

- Player caches tracks it has played
- ▶ Default policy is to use 10% of free space (capped at 10 GB)
- Caches are large (56% are over 5 GB)
- Over 50% of data comes from local cache
- Cached files are served in P2P overlay

Streaming a Track

- Request first piece from Spotify servers
- Meanwhile, search for peers with track
- Download data in-order
- ▶ When buffers are sufficient, only download from P2P
- ► Towards end of a track, start prefetching next one

P2P Structure

- Unstructured overlay
- Nodes have fixed maximum degree (60)
- Neighbor eviction by heuristic evaluation of utility
- No overlay routing
- A user only downloads data she needs

Downloading in P2P

- Ask for most urgent pieces first
- ▶ If a peer is slow, re-request from new peers
- When buffers are low, download from central server as well
 - ▶ When doing so, estimate what point P2P will catch up from
- If buffers are very low, stop uploading

Music vs. Movies

Music

- Small (5 minutes, 5 MB)
- Many plays/session
- Large catalog
- Active users

Movies

- ► Large (2 hours, 1.5 GB)
- ► High bit rate

Music vs. Movies

Music

- ► Small (5 minutes, 5 MB)
- Many plays/session
- Large catalog
- Active users

Main problem: peer discovery

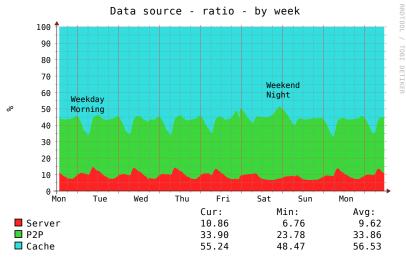
Movies

- ► Large (2 hours, 1.5 GB)
- ► High bit rate

Main problem: download strategy

Finding Peers

- Partial tracker (BitTorrent style)
 - ▶ Only remembers 20 peers per track
 - Returns 10 (online) peers to client on query
- Broadcast query in small (2 hops) neighborhood in overlay (Gnutella style)
- LAN peer discovery (cherry on top)
- Client uses all mechanisms for every track



Evaluation

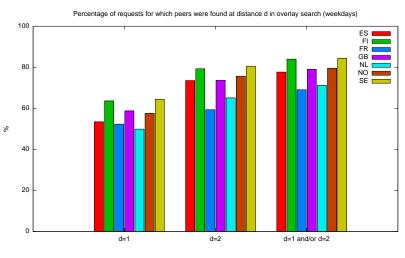
- ▶ So, how well does it work?
- ▶ Data both from 2010 study (P2P'10) and this work

Data Sources (from 2010)

Data Sources

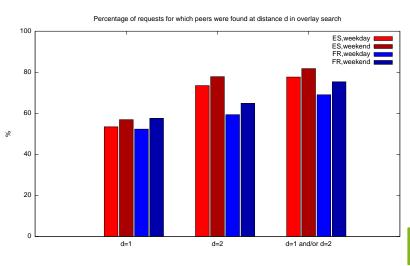
- Somewhat sensitive to churn
- Better P2P performance on weekends
- ▶ 8.8% from servers
- ▶ 35.8% from P2P
- ▶ 55.4% from caches

Finding Peers (from 2010)

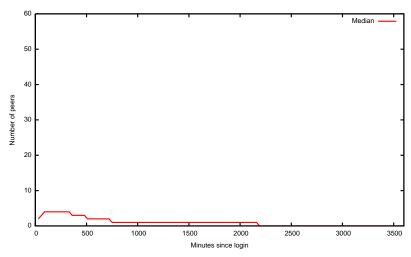

Table: Sources of peers

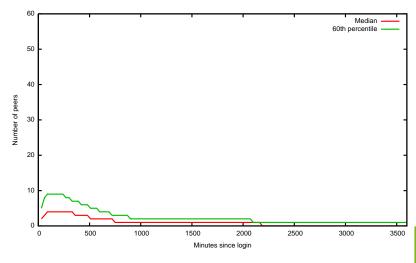
Sources for peers	Fraction of searches
Tracker and overlay	75.1%
Only Tracker	9.0%
Only overlay	7.0%
No Peers Found	8.9%

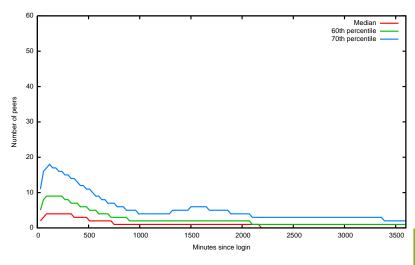
► Each mechanism by itself is fairly effective

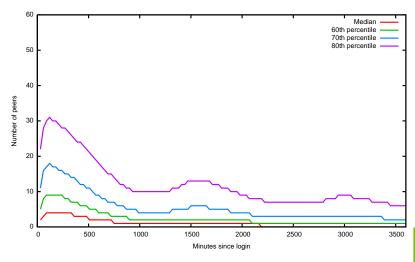


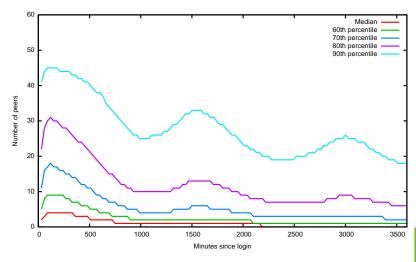
The overlay peer discovery mechanism

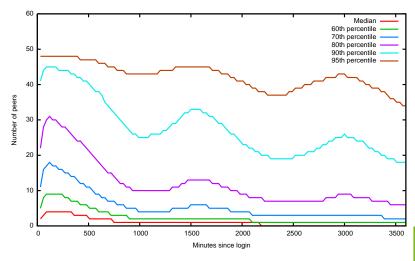


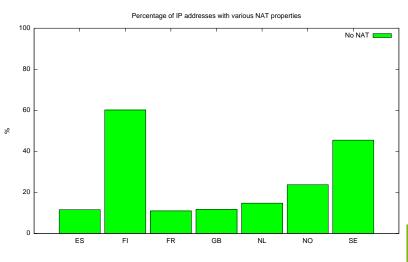

The weekend effect in peer discovery



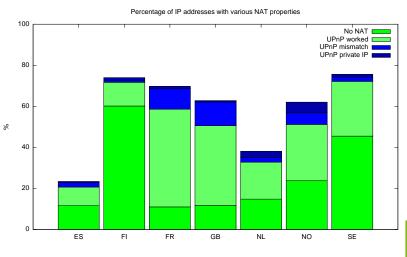




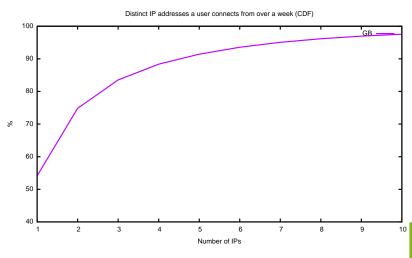


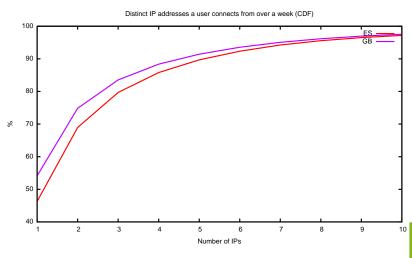


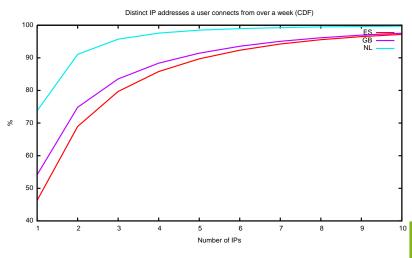
NAT types in the wild



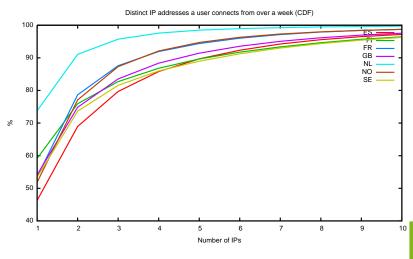
NAT types in the wild


NAT types in the wild






```
\Theta \Theta \Theta
                                   Numb3rs.avi
               C:\>IPSearchFNSD
               Input host ID 67095934 03
                                                                            USER:
                192.3382.1043.010.255
                                                                           0498578
               BACKTRACE 6586.7654//TT/106
                IP ADDRESS
                                 N/A Insufficient Code 001
                                       N/A Insufficient Code 002
                                       N/A Insufficient Code 003
                                       N/A Insufficient Code 005
                                       N/A Insufficient Code 006
                                       N/A Insufficient Code 007
               //1765437965//0486
                                       N/A Insufficient Code 008
                                       N/A Insufficient Code 009
 00:04:36
40 ----
```



Summary

- Measurements of a large, deployed system
- Future work
 - Scaling to more users
 - Improvements of P2P protocol
 - More measurements (what are you interested in?)

