Lower Bounds for Subset Cover Based Broadcast Encryption

Per Austrin Gunnar Kreitz

KTH - Royal Institute of Technology

Africacrypt '08, June 13

Broadcast Encryption Subset Cover UP-schemes

Three Usage Scenarios

- Pay-per-view Euro 2008 on your cell phone
- BluRay copy protection
- Military radio communication

Broadcast Encryption Subset Cover UP-schemes

What is Broadcast Encryption?

- The problem of establishing secure communication with a changing group of receivers
- One trusted sender, multiple receivers
- Network is a broadcast medium
- Berkovits 1991, Fiat and Naor 1994

Broadcast Encryption Subset Cover UP-schemes

The Basic Principle

- Initialize the system by giving each user some private information
- Establish a message key (sometimes called group key), Km
- Broadcast content encrypted with Km

Broadcast Encryption Subset Cover UP-schemes

The Basic Principle

- Initialize the system by giving each user some private information
- Establish a message key (sometimes called group key), Km
- Broadcast content encrypted with Km
- Updating the message key (depending on application)
 - When some number of members (possibly 1) have left/joined
 - At timed intervals
 - A combination of the above

Broadcast Encryption Subset Cover UP-schemes

Notation and Terminology

- *m* is the number of *members*
- r is the number of revoked users
- n = r + m is the number of *users*

Broadcast Encryption Subset Cover UP-schemes

The Naive Scheme

- One symmetric key for each user
- To establish message key K_m , broadcast K_m encrypted with each member's key

Broadcast Encryption Subset Cover UP-schemes

The Naive Scheme

- One symmetric key for each user
- To establish message key K_m , broadcast K_m encrypted with each member's key
- Example: $\mathcal{M} = \{1, 4\}$
- Broadcast: $E_{K_1}(K_m)$, $E_{K_4}(K_m)$

Broadcast Encryption Subset Cover UP-schemes

The Naive Scheme

- One symmetric key for each user
- To establish message key K_m , broadcast K_m encrypted with each member's key
- Example: $\mathcal{M} = \{1, 2, 4\}$
- Broadcast: $E_{K_1}(K'_m), E_{K_2}(K'_m), E_{K_4}(K'_m)$

Broadcast Encryption Subset Cover UP-schemes

Scheme parameters

- *b* is the *bandwidth* overhead
- s is the space required at users
- (We will ignore *time* to decrypt for this talk)

Broadcast Encryption Subset Cover UP-schemes

Scheme parameters

- *b* is the *bandwidth* overhead (*m* for naive)
- s is the space required at users (1 for naive)
- (We will ignore time to decrypt for this talk)

Broadcast Encryption Subset Cover UP-schemes

Subset Cover-based Broadcast Encryption

- Subset Cover is a principle for constructing Broadcast Encryption schemes
- Static family of sets of users
- Each set is associated with a key
- Only users in the subset know the key
- Naor, Naor, Lotspiech 2001

Broadcast Encryption Subset Cover UP-schemes

Subset Cover (cont'd)

- To distribute a new group key
 - Compute a cover of the members (avoiding revoked users), using the subsets
 - 2 Encrypt message key K_m with subset key for each subset in cover
- Bandwidth is equal to cover size

Broadcast Encryption Subset Cover UP-schemes

Subset Cover Example

• Each node is a key shared between users named in node

Broadcast Encryption Subset Cover UP-schemes

Subset Cover Example

- Each node is a key shared between users named in node
- Example: $\mathcal{M} = \{1, 4\}$
- Broadcast: $\mathrm{E}_{\mathcal{K}_{1,4}}\left(\mathcal{K}_{m}
 ight)$

Broadcast Encryption Subset Cover UP-schemes

Subset Cover Example

- Each node is a key shared between users named in node
- Example: $\mathcal{M} = \{1, 2, 4\}$
- Broadcast: $E_{K_{1,2}}(K'_m), E_{K_4}(K'_m)$

Broadcast Encryption Subset Cover UP-schemes

Key Derivation

• Bandwidth of this scheme is 2

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is 5

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is 4
- $K_{1,4} = PRG(K_1), K_{2,3} = PRG(K_3)$

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is 3
- $K_{1,4} = PRG(K_1), K_{2,3} = PRG(K_3)$

Broadcast Encryption Subset Cover UP-schemes

- Bandwidth of this scheme is 2
- Space of this scheme is 3
- $K_{1,4} = PRG(K_1), K_{2,3} = PRG(K_3)$

Broadcast Encryption Subset Cover UP-schemes

Unique Predecessor-schemes

- Unique Predecessor (UP) schemes
- The indegree of each node is at most 1
- Models natural key derivation with PRG
- Called Sequential Key Derivation Pattern in Attrapadung, Komara, Imai 2003

Broadcast Encryption Subset Cover UP-schemes

Unique Predecessor-schemes (cont'd)

- Allow any outdegree
- Allow any depth (inherently $\leq n$)
- Every singleton node must be present
- Key derivation graph will be a forest
- After normalization, there will be exactly n trees

Broadcast Encryption Subset Cover UP-schemes

An Easy Key Lemma

Lemma

Any Unique Predecessor scheme will have at most ns distinct subsets.

Broadcast Encryption Subset Cover UP-schemes

An Easy Key Lemma

Lemma

Any Unique Predecessor scheme will have at most ns distinct subsets.

Proof-sketch

Adding a new subset means at least one user needs to store one more key, proof by induction

Broadcast Encryption Subset Cover UP-schemes

Performance of PRG-based Subset Cover schemes

Scheme	Bandwidth	Space	Authors
Subset Difference	2r – 1	$\mathcal{O}\left(\log^2 n\right)$	NNL01
Layered SD	4 <i>r</i> – 2	$\mathcal{O}\left(\log^{3/2} n\right)$	HS02
Stratified SD	2r - 1	$\hat{\mathcal{O}}(\log n)$	GST04
Punctured Intervals (π)	$r/c + \mathcal{O}(1)$	$\mathcal{O}(poly\ n)$	JHCKLY05

Broadcast Encryption Subset Cover UP-schemes

Performance of PRG-based Subset Cover schemes

Scheme	Bandwidth	Space	Authors
Subset Difference	2r – 1	$\mathcal{O}\left(\log^2 n\right)$	NNL01
Layered SD	4 <i>r</i> – 2	$\mathcal{O}\left(\log^{3/2} n\right)$	HS02
Stratified SD	2r - 1	$\hat{\mathcal{O}}(\log n)$	GST04
Punctured Intervals (π)	$r/c + \mathcal{O}(1)$	$\mathcal{O}(poly\ n)$	JHCKLY05

• Is $\mathcal{O}(r)$ the best we can do?

Broadcast Encryption Subset Cover UP-schemes

Lower Bounds for Schemes Without Key Derivation

•
$$s \ge \left(\frac{\binom{n}{r}^{1/b}}{b} - 1\right)/r$$
 by Luby and Staddon 98

•
$$s \geq ({n \choose r}^{1/b} - 1)/r$$
 by Gentry et al. 06

• Proofs using the Sunflower lemma

Broadcast Encryption Subset Cover UP-schemes

Generic Lower Bound

- All broadcast encryption scheme need to encode the revoked subset
- (It is possible to test which users can decrypt correctly)
- This gives lower bound of $\approx r \log n$ bits

Few Revoked Users Many revoked users What's in the middle? Summary

Few Revoked Users

• For BluRay players, we can expect few revoked users (players)

Few Revoked Users Many revoked users What's in the middle? Summary

Few Revoked Users

- For BluRay players, we can expect few revoked users (players)
- With polynomial space, worst case bandwidth will be $\Omega(r)$ for "small" r

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Small r

Theorem

Let $c \ge 0$ and $0 \le \delta < 1$. Then, any UP-scheme with n users and space $s \le n^c$ will, when the number of revoked users $r \le n^{\delta}$, require bandwidth

$$p \ge \frac{1-\delta}{c+1} \cdot r$$

(1)

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Small r

Theorem

Let $c \ge 0$ and $0 \le \delta < 1$. Then, any UP-scheme with n users and space $s \le n^c$ will, when the number of revoked users $r \le n^{\delta}$, require bandwidth

$$p \ge \frac{1-\delta}{c+1} \cdot r$$

Proof-sketch

Count the number of ways to pick up to b subsets, and compare to the number of ways to choose r revoked users

(1)

Few Revoked Users Many revoked users What's in the middle? Summary

How tight is the bound?

- Subset Difference has $s = \log^2 n$, b = 2r 1
- For $r = \sqrt{n}$ our bound gives $b \ge \frac{r}{2(1+o(1))}$
- Within a factor 4 + o(1)

Few Revoked Users Many revoked users What's in the middle? Summary

How strong is the bound?

- Our bound only applies to UP-schemes
- We do not place any restriction on decryption time
- Our bound applies when space is polynomial
- Generally, logarithmic or poly-logarithmic space is acceptable

Few Revoked Users Many revoked users What's in the middle? Summary

Many revoked users

• In pay-per-view scenarios, we can expect (relatively) few members

Few Revoked Users Many revoked users What's in the middle? Summary

Many revoked users

- In pay-per-view scenarios, we can expect (relatively) few members
- For m < n/6s, worst case bandwidth will be m (same as Naive scheme)

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Large r

Theorem

For any UP-scheme S and $m \leq \frac{n}{6s}$, there is a member set \mathcal{M} of size $|\mathcal{M}| = m$ requiring bandwidth $b = |\mathcal{M}|$.

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Large r

Theorem

For any UP-scheme S and $m \leq \frac{n}{6s}$, there is a member set \mathcal{M} of size $|\mathcal{M}| = m$ requiring bandwidth $b = |\mathcal{M}|$.

Proof-sketch

- Revoke users with to high outdegree of their singleton node
- Pick a non-revoked user to keep as member, revoke users so that only her singleton key is usable
- This step will revoke at most 3s users each time

Few Revoked Users Many revoked users What's in the middle? Summary

How tight is the bound?

- There is a scheme with b < m when $m > \lceil n/s \rceil$
- Partition the users into blocks of size ≤ s and let each pair in a block share a key
- Bound is tight within a factor 6

Few Revoked Users Many revoked users What's in the middle? Summary

What's in the middle?

• For military communication, the number of members will vary

Few Revoked Users Many revoked users What's in the middle? Summary

What's in the middle?

- For military communication, the number of members will vary
- For some r, bandwidth is at least $n/1.89 \log_2 s$

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Arbitrarily Many Revoked Users

Theorem

Let $\delta \in (0, 1]$ and $\epsilon > 0$. Then for every UP-scheme S with $n > \frac{2\delta(1-\delta)}{\epsilon^2}$ there exists a set of users M of size $\delta - 3\epsilon \le |M|/n \le \delta + \epsilon$ which requires bandwidth $b \ge |M| \frac{\log(1/\delta)}{\log(s/\epsilon)}$

Few Revoked Users Many revoked users What's in the middle? Summary

A Lower Bound for Arbitrarily Many Revoked Users

Theorem

Let $\delta \in (0, 1]$ and $\epsilon > 0$. Then for every UP-scheme S with $n > \frac{2\delta(1-\delta)}{\epsilon^2}$ there exists a set of users M of size $\delta - 3\epsilon \le |M|/n \le \delta + \epsilon$ which requires bandwidth $b \ge |M| \frac{\log(1/\delta)}{\log(s/\epsilon)}$

Proof-sketch

- If the largest usable sets have size k, bandwidth will be $\geq m/k$
- ullet Revoke each user with probability $1-\delta$
- From each subset of size k + 1, revoke one more user
- Show that with positive probability, a sufficiently large number of members will remain

Few Revoked Users Many revoked users What's in the middle? Summary

How tight is the bound?

- There is a scheme with bandwidth b at most $\left[\frac{n}{\log_2(s)}\right]$
- Partition the users into blocks of size $\leq \log_2(s)$
- In each block, let every subset of users share a key
- Our bound is tight within a factor 1.89

Few Revoked Users Many revoked users What's in the middle? Summary

- Have shown lower bounds on bandwidth for a class of broadcast encryption schemes
- Bounds seem hard to sidestep without using more expensive key derivation techniques
- Bounds are tight up to small constants

Background Our Results	Few Revoked Users Many revoked users What's in the middle? Summary
---------------------------	--

Thank you!

