A Zero-One Law for Secure Multi-Party Computation with Ternary Outputs

Gunnar Kreitz

KTH - Royal Institute of Technology gkreitz@kth.se

TCC, Mar 29 2011

Our main result

Theorem (This paper)

For every n-argument function $f : A_1 \times \ldots \times A_n \to \mathbb{Z}_3$, f is either n-private, or it requires honest majority (formally: f is $\lfloor (n-1)/2 \rfloor$ -private and not $\lceil n/2 \rceil$ -private).

Secure multi-party computation

- Construct protocol to securely implement some functionality
- n parties jointly fill the role of trusted third party
- ► Here, we work with symmetric secure function evaluation
 - Each party P_i has secret input x_i
 - Want to evaluate a function $f(x_1, x_2, \ldots, x_n)$
 - f has finite domain
 - All parties receive the output (symmetric)

Our model

- In this talk, all our adversaries are passive (honest-but-curious)
 - Dishonest parties follow the protocol specification
- Information-theoretic security
 - Adversary has unlimited computation power
- Private-channels model
 - Parties are connected pairwise with perfectly private channels

Security

- Threshold adversary
 - Can corrupt any subset of parties of size $\leq t$
- Adversary's goal: learn more than what can be deduced from input of corrupted parties + function's output
- If there is protocol for f with threshold t, then we say f is t-private

Background results

- In our model, all functions are ⌊(n − 1)/2⌋-private [BGW'88, CCD'88]
- This is tight, some functions require honest majority (e.g., disjunction)
- But, some functions are *n*-private (e.g., summation)
- General understanding of limits is still an open problem

The two-party case is known

- ▶ Two-party *f* either not private, or is 1-private (= 2-private)
- An f with forbidden submatrix is not private [Bea'89, Kus'89]
- 1-private protocol for f without forbidden submatrix: decomposition
- Oblivious Transfer (OT) is not 1-private

In general, the privacy hierarchy is complete

- For every [n/2] ≤ t ≤ n − 2 there is f which is t-private but not t + 1-private [CGK'94]
- Construction to show this has f with large range, $2^{t+2} 2$
- ► Gives that for range Z₁₄, the hierarchy is complete for n = 4 parties

Zero-one law of Boolean privacy

- ▶ For Boolean functions, a zero-one law exists [CK'91]
- For Boolean *f* either:
 - f has an embedded OR, or
 - f is a summation, $f = \sum_{i=1}^{n} f_i(x_i)$

Zero-one law of Boolean privacy

Theorem ([CK'91])

For every n-argument function $f : A_1 \times \ldots \times A_n \to \mathbb{Z}_2$, f is either n-private, or it requires honest majority (formally: f is $\lfloor (n-1)/2 \rfloor$ -private and not $\lceil n/2 \rceil$ -private).

Our main result

Theorem (This paper)

For every n-argument function $f : A_1 \times \ldots \times A_n \to \mathbb{Z}_3$, f is either n-private, or it requires honest majority (formally: f is $\lfloor (n-1)/2 \rfloor$ -private and not $\lceil n/2 \rceil$ -private).

Context of the result

- Progress on a long-standing open problem
- Somewhat surprising that there is a zero-one structure for \mathbb{Z}_3
- Proof along the lines of classic proofs
- With generalizations of the techniques

Proof ingredients

- Structure lemma for functions with range \mathbb{Z}_3
- Two *n*-private protocols, generalizing summation and decomposition
- Blood, sweat, and tears

Boolean structure lemma

Lemma ([CK'91])

For every n-argument function $f : A_1 \times \ldots \times A_n \to \mathbb{Z}_2$, exactly one of the following holds:

- f has an embedded OR
- f is a sum: $\sum_{i=1}^{n} f_i(x_i)$

Our structure lemma

Lemma (Structure lemma)

For every n-argument function $f : A_1 \times \ldots \times A_n \to \mathbb{Z}_3$, at least one of the following holds:

- f has an embedded OR
- f is a permuted sum: $\pi_{x_n}(\sum_{i=1}^{n-1} f_i(x_i))$

f is collapsible

Decomposition

- Recall that for two-party computation, there is a complete characterization
- ▶ Functions which are *decomposable* are 1-private (=*n*-private)
- Collapsible is a generalization of decomposable

Proof strategy Collapsible functions

Drawing functions

1 1 2

Figure: $f(x_1)$

Proof strategy Collapsible functions

Drawing functions

Figure: $f(x_1, x_2)$

Proof strategy Collapsible functions

Drawing functions

Figure: $f(x_1, x_2, x_3)$

Proof strategy Collapsible functions

Decomposition protocol by example

Proof strategy Collapsible functions

Proof strategy Collapsible functions

Proof strategy Collapsible functions

Proof strategy Collapsible functions

Proof strategy Collapsible functions

Collapsible functions

Figure: $f(x_1, x_2, x_3)$

Proof strategy Collapsible functions

Collapsible functions

Proof strategy Collapsible functions

Collapsible functions

Proof strategy Collapsible functions

Collapsible functions

Figure: Partial $f(x_1, x_2, x_3)$

Proof strategy Collapsible functions

Collapsible functions

Figure: Partial $f(x_1, x_2, x_3)$

Figure: $\sum_{i=1}^{3} f_i(x_i) \mod 4$

Proof strategy Collapsible functions

Collapsible functions

Figure: Partial $f(x_1, x_2, x_3)$

Figure: $\sum_{i=1}^{3} f_i(x_i) \mod 4$

Blood, Sweat, and Tears

- Structure lemma (case analysis)
- ► Collapsible functions without embedded OR are *n*-private
 - Once one output eliminated, remaining two can be separated
- "Large" embedded OR implies "small" embedded OR

To \mathbb{Z}_4 and beyond!?

- \blacktriangleright Do not know if a zero-one law holds for \mathbb{Z}_4
- If it does:
 - Protocols and generalized definition still apply for larger ranges
 - But, structure lemma would change
 - Proof heavily relies on range of function

Conclusions

- ▶ Proved Zero-One law for secure computation with range \mathbb{Z}_3
- Information-theoretic passive adversary, private channels
- Proof via structure lemma and generalized protocols

